Continuous Markov Random Fields for Robust Stereo Estimation

نویسندگان

  • Koichiro Yamaguchi
  • Tamir Hazan
  • David A. McAllester
  • Raquel Urtasun
چکیده

In this paper we present a novel slanted-plane model which reasons jointly about occlusion boundaries as well as depth. We formulate the problem as one of inference in a hybrid MRF composed of both continuous (i.e., slanted 3D planes) and discrete (i.e., occlusion boundaries) random variables. This allows us to define potentials encoding the ownership of the pixels that compose the boundary between segments, as well as potentials encoding which junctions are physically possible. Our approach outperforms the state-of-the-art on Middlebury high resolution imagery [1] as well as in the more challenging KITTI dataset [2], while being more efficient than existing slanted plane MRF methods, taking on average 2 minutes to perform inference on high resolution imagery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Closed-Form Solution to Tensor Voting: Theory and Applications

We prove a closed-form solution to tensor voting (CFTV): given a point set in any dimensions, our closed-form solution provides an exact, continuous and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MR...

متن کامل

Stereo Matching Using Belief Propagation

In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by i...

متن کامل

A Machine Learning Approach to Recovery of Scene Geometry from Images

Recovering the 3D structure of the scene from images yields useful information for tasks such as shape and scene recognition, object detection, or motion planning and object grasping in robotics. In this thesis, we introduce a general machine learning approach called unsupervised CRF learning based on maximizing the conditional likelihood. We describe the application of our machine learning app...

متن کامل

Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields

We present telescoping recursive representations for both continuous and discrete indexed noncausal Gauss-Markov random fields. Our recursions start at the boundary (for example, a hypersurface in R, d ≥ 1) and telescope inwards. Under appropriate conditions, the recursions for the random field are differential/difference representations driven by white noise, for which we can use standard recu...

متن کامل

Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials

In this paper, we prove that every multivariate polynomial with even degree can be decomposed into a sum of convex and concave polynomials. Motivated by this property, we exploit the concave-convex procedure to perform inference on continuous Markov random fields with polynomial potentials. In particular, we show that the concave-convex decomposition of polynomials can be expressed as a sum-of-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012